
Lab 5: Final Project

Cory Brolliar, Clayton Dembski, Zoraver Kang

I. INTRODUCTION

The task of this final project was to use our 3-DOF
arm along with our camera to identify the objects by
color, acquire them and weigh them, then sort them by
both color and weight. To determine the weight of each
object, we used the load cells that were provided on the
arm. This final project ties all of the components from
all of the individual labs together into an automated
robotic sorting system.

II. METHODOLOGY

A. Communication Protocol

To enable communication between our arm and
a lab computer running MATLAB, we built on the
framework provided to us. On the MATLAB side, we
utilize the provided PacketProcessor class with
wrapper functions to make our code more concise.
On the arm side, we utilized several classes which
extend PacketEventAbstract in a way similar to
the approach taken in PidServer. These classes are
StatusServer, GainServer, and ClawServer.
PidServer handles the SET PID command (ID

= 37). This command sets the setpoints of the PID
controllers of the arm based off of the given arguments.
Its arguments are:

1) Position setpoint for axis 0 (base axis) in raw
encoder ticks

2) Velocity target for axis 0 (base axis) in encoder
ticks per second

3) Force target for axis 0
4) Position setpoint for axis 1 (shoulder) in raw

encoder ticks
5) Velocity target for axis 1 (shoulder) in encoder

ticks per second
6) Force target for axis 1
7) Position setpoint for axis 2 (elbow) in raw en-

coder ticks
8) Velocity target for axis 2 (elbow) in encoder ticks

per second
9) Force target for axis 2

The velocity and force target systems are not currently
implemented. The SET PID command returns the the

following values: (position of encoder on axis 0, 0
(reserved), 0 (reserved), position of encoder on axis 1,
0 (reserved), 0 (reserved), position of encoder on axis
2, 0 (reserved), 0 (reserved)).
StatusServer handles the STATUS command

(ID = 38). This command takes no arguments and
returns the current values of the internal sensors of the
arm is the following order:

1) Position of encoder 0 (base axis) in raw encoder
ticks

2) Position of encoder 1 (shoulder) in raw encoder
ticks

3) Position of encoder 2 (elbow) in raw encoder
ticks

4) Velocity measured by encoder 0 in encoder ticks
per second

5) Velocity measured by encoder 1 in encoder ticks
per second

6) Velocity measured by encoder 2 in encoder ticks
per second

7) Base axis torque sensor ADC reading, averaged
over 5 samples

8) Shoulder torque sensor ADC reading, averaged
over 5 samples

9) Elbow torque sensor ADC reading, averaged over
5 samples

GainServer handles the SET GAIN command (ID
= 39). This command allows for the PID coefficients
of any of the PID controllers on the device to have
their gains set via MATLAB. The arguments of this
command are (zero-indexed axis number corresponding
to the PID controller you want to configure, new kp,
new ki, new kd). Before changing the gains of the
specified PID controller, the GainServer disables
that specific controller. Once the gains are updated, it is
re-enabled. The SET GAIN command does not provide
any return values.
ClawServer handles the SET CLAW command (ID

= 40). This command allows for the claw at the tip
of the arm to be controlled via MATLAB. It takes a
single argument: a float between 0.0 and 1.0 which
corresponds to the position of the servo within its



overall range of motion. The SET CLAW command
does not provide any return values.

B. Inverse Position Kinematics

The inverse position kinematics of arm were deter-
mined through the use of geometry and trigonometry.
By projecting the tip of the arm onto the xy plane,
we easily found q0 = atan(py/px). In Matlab, we
use the atan2() function to avoid the edge cases of
the atan() function, so the above expression for q0
becomes q0 = atan2(x, y).

To determine the values of q1 and q2, we examined
the arm in the plane shared by all three links, as shown
in figure 11. The value of H can be easily determined
using the Pythagorean theorem.

H =
√
p2x + p2y + (pz − L1)2

Now that the value of H is known, Θ can be determined
using the law of cosines.

H
2

= L
2
2 + L

2
3 − 2L2L3cos(Θ)

2L2L3cos(Θ) = L
2
2 + L

2
3 −H

2

cos(Θ) =
L2

2 + L2
3 −H2

2L2L3

Θ = acos

(
L2

2 + L2
3 −H2

2L2L3

)

Using the value of Θ, q2 can be determined.

q2 = π −
π

2
− Θ =

π

2
− Θ

The values of H and Θ can be used in conjunction
with the law of sines to determine the value of Φ.

sin(Φ)

L3

=
sin(Θ)

H

Φ = asin

(
L3

H
sin(Θ)

)

The value of q1 can be determined through the use of
geometry and the value of Φ.

q1 = Φ + atan

 pz − L1√
p2x + p2y

 = asin

(
L3

H
sin(Θ)

)
+ atan

 pz − L1√
p2x + p2y


= asin


L3√√√√(p2x + p2y + (pz − L1)2)

sin

acos


L2
2 + L2

3 − (p2x + p2y + (pz − L1)2)

2L2L3







+atan

 pz − L1√
p2x + p2y


In summary, the inverse position kinematics of our 3-
DOF arm are:

q0 = atan

(
py

px

)

q1 = asin


L3√√√√(p2x + p2y + (pz − L1)2)

sin

acos


L2
2 + L2

3 − (p2x + p2y + (pz − L1)2)

2L2L3







+atan

 pz − L1√
p2x + p2y



q2 =
π

2
− acos

(
L2

2 + L2
3 − (p2x + p2y + (pz − L1)2)

2L2L3

)

C. Trajectory Generation Function

To implement trajectory generation, the func-
tion TrajectoryGen.m was created matching the
method using position and velocity. The function ac-
cepted 2 times, 2 positions, 2 velocities and a time step
and returned a time array, a position array, a velocity
array and an acceleration array. The function was to
match a cubic polynomial for position dynamics:

Pdir = a0 + a1 ∗ t + a2 ∗ t2 + a3 ∗ t3

As this equation was mapped as a 1 dimensional vector
with respect to time, three polynomials were needed,
one for travel in the x direction, one for travel in the
y direction, and one for travel in the z direction. For
velocity dynamics, the derivative could be taken:

Vdir = a1 + 2 ∗ a2 ∗ t + 3 ∗ a3 ∗ t2

For the 3rd return data, acceleration, the derivative
could be taken one more time:

Vdir = 2 ∗ a2 + 6 ∗ a3 ∗ t

Given 4 points, 2 positions, initial and final, and 2
velocities, initial and final, and a time period for this
to take place, the cubic could be solved through linear
algebra: 

1 ti t2i t3i
0 1 2 ∗ ti 3 ∗ t2i
1 t t2f t3f
0 1 2 ∗ tf 3 ∗ t2f

 ∗


a0
a1
a2
a3

 =


pi
vi
pf
vf




a0
a1
a2
a3

 =


1 ti t2i t3i
0 1 2 ∗ ti 3 ∗ t2i
1 t t2f t3f
0 1 2 ∗ tf 3 ∗ t2f


−1

∗


pi
vi
pf
vf


where time and p and v are the initial and final positions
and velocities respectively.

Once each constant ai was solved for each axis
with respect to frame F0, a series of points could
be generated using the time step. An array of times,
from the initial time to the final time was generated.
Each time was plugged into the corresponding cubic,
parabolic and linear equations to generate x y and z
positions, velocities, and accelerations, all of which
were then returned to the user.

In order to execute a trajectory, a set of task space
position set points is generated using a trajectory gen-
eration function and a timer is set up to call a function
which moves the arm to the given set point for the
current timestep at a constant time interval. In our case,
we used a time interval of 100 milliseconds. This func-
tion uses the inversepk() function to determine
the joint angles for each setpoint and sets the position
PID setpoint of the arm using the setPosition()
function.



D. Joint Torque Sensor Calibration

In order to calibrate the joint torque sensors, we
moved the arm into its fully vertical position (q0 =
0, q1 = π/2, q2 = −π/2) with the motors unpowered
and read each torque sensor five times. The zero
offset for each joint torque sensor was determined by
taking the average of the corresponding set of readings.
The zero offsets are applied on the Nucleo side, in
StatusServer. In addition, the StatusServer
returns an average of the five most recent ADC readings
for each joint torque sensor value.

We utilized the provided scale factors for the
joint torque sensors. The given equation for this was
ADC = 178.5 ∗ torque+ 1918.4. As this was a 12 bit
ADC, to find the torque, we rearranged this equation
to be

4096 − 1918.4

178.5
or 12.199, our scale factor.

E. Displaying Applied Force Vectors on a Live Plot
After calibrating the joint torque sensors, the next

task was to show, on the 3D plot, the force applied
at any given time. First, we improved the 3D plot
already displayed by the System, adding and labeling
the frames at each joint. To show the frames for said
joints, we added the function mArrow3() to plot a
3d arrow on our graph. To have them pointing in the
direction of the x, y, and z axis of each frame, we were
able to use the frame transformations multiplied by a
constant of 5, to make them more visible. For each T b

a
where T is a 4 by 4 matrix, the first 3 columns represent
the unit vector in the x, y, and z direction with respect
to a. The frame at the end of link 1 was found using
T 1
0 , link 2 was T 2

0 and link 3 was T 3
0 . The frame names

were set to be a constant height above where the frame
was set. Once we had this updated graph, the inverse
Jacobian was used to identify the force and add said
force to the tip of arm in the live plot. The Jacobian
itself could be found in a function created for a previous
lab: inversevk() and was given by figure 12. The
torque at each joint of the arm is found as follows:

τ1τ2
τ3

 =
[
J(3x6)

]T ∗


fx
fy
fz
nx
ny
nz


When examining the arm when it is holding an object

at its tip, the moments applied to the tip are minuscule
and can be approximated to zero (the heavy object
can rotate in the grip so that it is always exerting a
force approximately straight down at any given instant).
Because of this, the corresponding half of the angular
Jacobian can be discarded, and the equation simplifies
to: τ1τ2

τ3

 =
[
J(3x3)

]T ∗

fxfy
fz


This transpose Jacobian is invertible, as the number of
rows match the number of columns. Because of this,
methods of linear algebra can be used to find the force
vector. [[

J(3x6)
]T ]−1

∗

τ1τ2
τ3

 =

fxfy
fz



Once we were able to generate the graph, we had to
display the force vectors for 3 arbitrary conditions, seen
by figures 1-8. The first graph in each set is the vector
unloaded, while the second in each set is loaded with a
net force of 5 newtons. From these graphs, it is apparent
that the force is changing by a total of 5 newtons. It is
also apparent that the plot can react to an applied force
in any direction in 3 dimensional space, not just a force
the arm is gripping (IE: in the negative Z direction with
respect to frame F0).

F. Live Object Measurement

To generate our live object measurement, we edited
the setpointsipk() script a new created for a pre-
vious lab to create a new script, setpointipk5().
This script specifically took a series of set points and
created a trajectory between each of them. In addition,
using Matlab’s timer library, the script created a series
of set interrupts. Each time an interrupt was called, the
current data for the arm, encoder positions, velocities
and forces, were returned and appended to a csv file that
could later be read from. The 10 set points were placed
to be on either side of the robot, slowly increasing in
the x direction with every cycle back and forth. The
heavy weight was used to give the best force sensing
results. Using this data, three graphs were generated:
Position vs Time, Force vs Time, and Net Force vs
Time. These graphs can be seen in figure 9.

G. Object Localization

In order to determine the positions of each object
in the workspace, we developed a MATLAB func-
tion to detect the position from the viewpoint of the
camera. This function getAllTargetPosition()
takes two arguments: a camera object, and a number
corresponding to a color (1 corresponds to the color of
the blue object, 2 corresponds to the color of the green
object, and 3 corresponds to the color of the yellow
object). It returns the pixel coordinates of the centroid
of the largest object of the specified color.
getAllTargetPosition() contains a vision

pipeline as described below:
1) Acquire image from webcam
2) Crop the image to only show the workspace area
3) Convert the image from the RGB color space to

the HSV color space
4) Threshold the image using the HSV description

of the selected color
5) Fill holes in the resulting blobs
6) Extract the diameters and centroids of each blob



7) Select the blob with the largest diameter and
return its centroid if the diameter is above a
certain threshold

The thresholds for each color were determined using
the MATLAB Color Thresholder app in the HSV color
space. By carefully tuning these thresholds, we were
able to eliminate the false positives for the yellow target
caused by the wooden floor of the workspace that were
initially present.

H. Automated Sorting System

In order to create the software which enabled the arm
to automatically pick up and sort all of the objects in the
workspace, we utilized our previous work on forward
and inverse position kinematics, trajectory generation,
force sensing, and vision processing. We delegated
tasks between the lab computer running MATLAB and
the Nucleo-controlled arm as follows. The MATLAB
side handled the user interface, forward position kine-
matics, inverse position kinematics, trajectory gener-
ation, force propagation, vision processing, and the
overall control logic. The Nucleo side handled the PID
controllers and low-level interfaces to the encoders and
joint torque sensors. Communication between the com-
puter running MATLAB and the Nucleo was facilitated
by the communication protocol described in section II-
A.

A simplified version of the high-level control logic
of the automated sorting system is as follows:

1) Open the claw
2) Move the arm in a smooth trajectory from its

current position to a position where it does not
block the camera

3) Using vision, scan until an object is found and
store its color (continue) or the system times out
(exit)

4) Move the arm using inverse position kinematics
to a position 4” above the target object

5) Lower the claw onto the object using a smooth
trajectory and close the claw

6) Raise the claw to a position 4” off the ground
above its previous position using a smooth tra-
jectory

7) Move the arm into its standard weight measure-
ment position1 using a smooth trajectory

8) Weigh the object and determine whether its base
is light or heavy

1q0 = 0, q1 = π/2, q2 = 0

9) Move the arm to a position determined based on
the color and weight of the object using a smooth
trajectory and open the claw to release the object

10) Return to step 2) and repeat.
The high-level logic outlined above is implemented

in main.m on the MATLAB side.

III. RESULTS AND DISCUSSION

A. Displaying Applied Force Vectors on a Live Plot

One of the tasks that took the most time was to get
the arm to correctly display the force vector, mainly
due to us trying to interpret the angle of the arm as
radians, when the input was encoder ticks. Although we
did eventually fix our Jacobian-based approach, during
the time that it was not working we took a a physics
approach to computing this vector (see figure 10). For
a static system in a 2d plane, two torque equations can
be made, one for τ1 and one for τ2:

τ2 = fcos(θ3) ∗ l2

τ1 = (l0−z)fsin(90+θ3+θ2−θ1)+xfcos(90+θ3+θ2−θ1)

and the two unknowns can be solved. As θ3 was em-
bedded deep within sin and cos in τ1, the mathematics
to solve for it would be nontrivial. Due to this, the
answer was solved through MATLAB. The symbolic
solve() function, and symbolic simplify function
was used to solve for the magnitude and angle, dis-
played in corresponding order as the first, and second
answer. While this method was unimplemented, this did
show how greatly the Jacobian reduced the amount of
mathematics to be implemented by the user.

B. Live Object Measurement

The final output of this step is a set of three graphs
(figure 9). The first graph is a position vs time graph
of the arm as it moves back and forth in the xy plane.
The arm swings from +y to −y while ever increasing
in the x, and not changing in the z. The graph plots
this exactly as is specified by the code: The y position
creates somewhat of a square wave, bouncing back and
forth between 3 and -3, the x increases from 0 to 4,
and the z stays stable. The starting inconsistency that
one can tell, however, is due to the fact that the arm did
not start at the first position in the list. There was no
trajectory planning for this point, it was only set and
assumed to be there initially. Because of this, when the
program started to run, the arm moved at high velocity
to this start position. The second plot is a Force Vector
vs Time graph. Again, as expected, the force in the z
direction remained very consistent throughout each of



the tests. This was because the arm did not accelerate
in the z direction, causing no extraneous torques or
forces on the arm. As the arm moves from close to its
center to the max range ”out” in the x direction, one
can see the force changes from being mainly in the y
direction to mostly in the x direction over the course
of the movement. Each spike in the x direction is due
to the centripetal force of the arm moving across each
point, while each spike in the y direction is due to the
acceleration of the cubic trajectory, causing a speed
from 0 to 0 over the duration. The net force for the
arm, as one would expect, remains decently consistent
between each loop. Each slight dip in the net force,
every 1.5 seconds or so, is explained by the arm settling
from motion. This settling stops the acceleration in all
directions except gravity, and, at this point, only the
mass of the arm and weight is read.

C. Problems in Automated Sorting

Implementing the basic functionality of the arm so
that it would pick up the mass, weigh it, and deposit
it in the desired location based off of it weight and
color, was a process that we were able to get done
relatively easily; however, most of our time and energy
went into getting the arm consistent for each trial, trial
after trial and day after day. There were 3 problems
we ran into: inconsistencies in location, discrepancies
in force sensing, and malfunctions in gripping.

1) Inconsistencies in Location: We ran into two
inconsistencies while trying to track the objects of
each color, in reading the objects themselves and in
tracking their absolute position. First, the color readings
were not consistent. Depending on the ambient lighting
and focus on the camera, the colors would be read
differently. By having a light source brighter or closer,
the color would seem lighter then the calibration hue,
preventing the sphere from being read as a solid circle.
If the focus was blurred from the center value, the
colors would blend together, and the resulting read
would be a smaller sphere. When both of these built
up to be too great, the spheres could be deteriorated to
such an amount that they could not be read at all, or
be lower than our threshold size for an object. To fix
this, we fixed a lab light exactly 22.5 inches above the
center of the board and calibrated the color thresholds
for this light source.

Second, the arm was unable to go the the correct
location of the colored ball initially. This was because
the height of the ball above z = 0 caused the camera’s
angled projection to see the ball on a flat plane further

back than its position should be. Originally, the solution
to this was to add a set value to the x position,
increasing the position the arm would go to forwards
single inch. However, as we tested the edge cases, we
noticed another inconsistency, the placement closest to
the camera would miss the slightest bit, while further
back would miss by a relatively great value. We decided
to implement a second patch to the y position, as
a dependency on x. The end result was 2 equations
for our shift of position: x = x + 0.875 and y =
y ∗ (a1 + a2x), which allowed for great accuracy in
correctly grabbing the specified object, regardless of
location.

2) Discrepancies in Force Sensing: One can see,
when looking at figures 1 - 8, that there is a need to
show the unloaded vector to accurately read the data.
In addition, were one to test the robot after leaving
it over night, they would find something peculiar: it
would have a tenancy to sort both heavy weights and
light weights as light weights or to sort both as heavy
weights. There are two main reasons that a vector is
displayed, even when the system is unloaded. First,
gravity compensation is not implemented. This means
that the force created by the innate weight of the arm is
not counteracted, and the vector is the net value, not just
the applied value. The second is due to the joint torque
sensors themselves. They had a tenancy to drift greatly
depending on how long they were used for. Most likely,
this was due to changes in temperature of the sensor.
When the arm was on for a long time, during 2 days
of multiple hour testings, the heating caused by the
current running through the joint torque sensors, along
with the ambient temperature, caused a shift in the
readings, especially when the end effector was held far
from the center position. A higher temperature means a
higher thermal expansion of the strain gage and a higher
lead wire resistance, both of which lower the voltage
output by the whetstone bridge. The wires connecting
the strain gage to the bridge were extremely tiny, as
they were the same thickness as on the surface of the
gage itself. On the surface, this is done in the gage so
that any flexing of the wire can be sensed, however,
outside of this, having the external wires so close to
the bot, a wrong movement could push or crimp the
wires, simulating, sometimes permanently, a strain on
the robot. Both of these cases force recalibration when
brought to an extreme, as the data we have used to
measure the forces are no longer accurate.

3) Malfunctions in Gripping: When we first ac-
quired the claw and attached it to our robot arm, we



noticed that it was suitable enough to pick up the light
objects and move them around without dropping them.
However, when we tried to move the arm around with
the heavy object in the claw, the object would fall out
if the arm moved to fast. Our first thought was to slow
down the trajectory generation of the arm from point
to point. We tried this and it worked but there were
still some runs where the weight would fall out of
the claw. We knew that this was not consistent enough
so we needed to seek another alternative. We decided
that 3D printing an attachment in the shape of the
spherical object would be our best chance at the robot
not dropping the heavy object. After designing and 3D
printing our first iteration of the design, it proved to
have an error in the dimensioning and was too small
to encase the entire object.

Instead of 3D printing the first design again with the
correct dimensions, we scratched it and moved onto a
forklift method. After designing and 3D printing this
design, we tested it and it was better than the claw
alone because it did not allow the object to rotate when
going up to the weighing position. While it was better
in this sense, it was not suitable enough to hold onto
the object when the arm was in a downward position
thus, was not an acceptable solution.

After many iterations, we decided to make the claw
have more grip instead of trying to make more attach-
ments for it. Wrapping high-friction rubber electrical
tape around each part of the claw proved to be the best
and easiest way to hold onto the heavy object. This
was our final iteration of the claw. After the claw’s
grip was improved, we were able to double the speed
of our trajectories without any negative side effects to
the reliability of the system.

IV. CONCLUSION

Overall, this last project was a very good way of
utilizing what we have learned in all of the previous
labs and in the class in general. It brought all of the
components together, including the forward and inverse
kinematics of the arm, force sensing using the load
cells, and vision processing using the camera. One of
the main underlying issues that we experienced was
that the joint torque sensors drifted. To correct this,
we needed to calibrate them for each session that we
were working on the robot. While this was not much
of a hassle, it did prove to hinder the program if not
calibrated correctly. Another method that needed to be
explored for our arm was the claw. Our gripper was
not suitable enough to grip the heavy object while

the arm was in motion. To correct this, we stepped
through multiple iterations of the claw and finally
came to a conclusion of putting high-friction rubber
electrical tape around each portion of the claw. While
we did have some barriers to overcome, we were able to
successfully finish the final project and have the robot
reliably sort the objects by both color and weight.

The code for this project can be found on Github
in our team’s Matlab and Nucleo firmware repositories
under the tag rbe3001 final.

ACKNOWLEDGMENT

We would like to thank professor Fisher and Kevin
Harrington for providing us with the materials and
knowledge necessary to complete this project. We
would also like to give special thanks to our teaching
assistants, Gunnar Horve and Nathaniel Goldfarb.

APPENDIX

The figures below represent the arm in three different
measurement positions to measure the 5N force that
we exerted on the arm. There are two figures per
configuration, one representing no load on the arm and
one representing the 5N force on the arm. As you can
see in each figure, we have shown the force that is
being applied to the arm using the load cells. The next
three numbers in the figure represent the torque in each
joint of the arm going from q0 to q2 respectively.

Fig. 1: Example of first position with no load



Fig. 2: Example of first position with load applied

Fig. 3: Example of second position with no load

Fig. 4: Example of second position with load applied

Fig. 5: Example of third position with no load



Fig. 6: Example of third position with load applied

The next two figures below represent the arm in two
different configurations while holding the object. For
the second figure, our calibrations were off for the
initial starting value, but the end value ended up being
20N when it started at about 18N. The force that is
being represented is the object and the object weighed
about 4N.

Fig. 7: Example of first position with object

Fig. 8: Example of second position with object

For this part of the project, we needed to make the
arm go through a series of 10 arbitrary points while
holding the object in the gripper, stopping at each
setpoint for at least five seconds. For the plot below,
this describes the x, y, z position, the force, and the
Net force all with respect to time.

Fig. 9: Plot of Live Object Measurement



Fig. 10: A Physics Approach to the Torque of System

Fig. 11: Diagram for Inverse Position Kinematics

−L2 ∗ sin(q0) ∗ cos(q1) − L3 ∗ sin(q0) ∗ sin(q1 − q2) −L2 ∗ cos(q0) ∗ sin(q1) + L3 ∗ cos(q0) ∗ cos(q1 − q2) −L3 ∗ cos(q0) ∗ cos(q1 − q2)
L2 ∗ cos(q0) ∗ cos(q1) + L3 ∗ cos(q0) ∗ sin(q1 − q2) −L2 ∗ sin(q0) ∗ sin(q1) + L3 ∗ sin(q0) ∗ cos(q1 − q2) −L3 ∗ sin(q0) ∗ cos(q1 − q2)

0 L2 ∗ cos(q1) + L3 ∗ sin(q1 − q2) −L3 ∗ sin(q1 − q2)];



Fig. 12: The 3 by 3 truncated Jacobian calculated for
the 3DOF arm

REFERENCES

[1] http://www.ni.com/white-paper/3432/en/
http://www.sciencedirect.com/science/article/pii/S2238785414001082
https://www.cirris.com/learning-center/general-
testing/special-topics/177-temperature-coefficient-of-copper
https://www.mathworks.com/matlabcentral/fileexchange/25372-
marrow3-m-easy-to-use-3d-arrow


