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I. ABSTRACT

Our project aims to explore the feasibility and use-
fulness of communicating directional information using
LED rings in order to have a swarm of robots all visit a
target location. To do this we set up a number of trials
in ARGoS using the Swarmanoids footbot. Our idea
is loosely based off of AdaBoosting, in this machine
learning technique, a complex distribution of points is
described by using simpler, less robust identifiers, then
combining them to form a more complex and robust
identifier. Rather than separate sets of data, we use
multiple weak guide robots to form one strong force
that points towards the goal. We can do this by using the
footBots LED ring and then interpret that ring through
the omnidirectional camera.

II. INTRODUCTION AND RELATED WORK

While there are multiple, already established, meth-
ods to get a swarm of robots to converge at or go
towards a particular point, our team set out to develop
a new one. Using basic communications through an
LED ring around each robot, the swarm is capable
of transmitting the location of the point of interest.
(POI) This system begins when one robot finds the
goal and then signals to the rest of the swarm the
region that the POI is in relative to itself. Then as
more robots reach the goal, the relative position of
the POI begins to be more clearly defined and makes
the task of finding it simpler for future robots. This
method is similar to the way that AdaBoosting works
in machine learning. Where in the boosting technique
the data region is separated using a multitude of weak
classifiers eventually forming a complex and robust
classifier. We use relative position to split the field into
POI is here and POI isn’t here, once enough robots
have managed to find the goal, the position of the POI
is fairly well defined and robots can more easily find the
goal. This kind of navigation does not require any kind
of information transfer between individual robots and
therefore is not subject to packet loss, data corruption or
interference with wireless transmissions. Furthermore,

because LEDs are relatively simple and robust pieces of
technology, and cameras are fairly standard on swarm
bots, this implementation should be lower maintenance
than other forms of data transmission.

III. PROBLEM STATEMENT

The purpose of this project is to outline a model for
the discovery of a point of interest, by a decentralized
robotic swarm, within a finite space. This model acts
as a search around a space, where every single entity
searching for a particular object, needs to personally
find the object, without being directly passed the loca-
tion. This situation could occur if direct communication
between two robots is not possible, or limited. Or
if the exact location of the point of interest is not
known to a swarm robot, just the general location. This
model could also be used as a decentralized recruitment
algorithm, where all robots locate a specific point of
interest, and then approach that point.

IV. METHODOLOGY

As opposed to the foraging models presented in the
previous section, this research project will not use a
pheromone trail to inspire foraging behavior. Rather,
this project presents a method of trail forming behavior
in the following manner.

A. ARGoS and Buzz

The foundation for this experiment was provided by
the ARGoS simulation software. ARGoS is a multi-
physics robot simulator which can simulate large-scale
swarms of robots of any kind efficiently [1]. ARGoS
allows for the implementation and coding of robotic
swarms through a programming language called Buzz.
Buzz allows for the programming of individual robots
as well as the entire swarm in an efficient manner. All
experiments and trials for this project were run in the
ARGoS simulator, and coded using Buzz programming
language. Version control was provided using a GitHub
repository.



B. Foot-bot

The robot entity used in ARGoS for this paper was
the Foot-bot. The simulated robot originates from a
swarm robotics project that was active between 2006
and 2010 [2]. The Foot-bot boasts 24 light sensors,
24 short range proximity sensors, a 12 LED ring, all
around the robots perimeter, and an omni-directional
camera for colored blob detection.

Fig. 1: 12 rays representing the LED ring

Fig. 2: 24 rays representing the proximity and light
sensors

C. LED Rings

The LED rings around each robot was utilized to
display information for other unit for these experi-
ments. With the 12 LEDs, the presented model allows
each robot to outwardly express information, such as
a specific direction. More specifically the LED ring
allows the robot to be split into two distinct halves,
and light each in a different color.

Fig. 3: Top view of the two-color LED ring

Fig. 4: Side view of the two-color LED ring

D. Color Detection

The robots were able to use the Omni-directional
Blob Detection Cameras to see colors surrounding
them within the cameras range. The range is given
by 0.289m*tan(), where the is user specified aperture.
Each color in line of sight within this range is logged
in the robot as a blob, which contains an R.G.B value
between 0 - 255, a distance, and an angle. This allows
a robot to register and interpret the LED rings of the
other robots.

Fig. 5: Blob detection rays

E. Using the LED Ring

The novelty of this project comes when an individual
robot locates, or is otherwise informed of a Point Of



Interest (POI) within the given map. For our conver-
gence tests, the robot was supplied with this point, and
for the foraging tests, the robot found this point when
within a threshold of a supplied light source. Once the

Fig. 6: The virtual axis of a robot

position is noted, the robot then uses its LED ring to
create two semicircles, one of color red and one of
color green. Where these semicircles meet is a virtual
axis (6: yellow dashed line), dividing the two colors.
This line is always perpendicular to the virtual vector(6:
Yellow arrow) created by the stored position and the
robot. In essence, the robot divides the space into two
areas, where the point is and where the point isnt. For
simplicity’s sake in ARGoS, we set up the robots to
store the POI once found, and use the global positioning
system to keep track of where the robot is relative to
the POI. In a real system, after the POI was found
and the virtual axis was set, the axis could be kept
track of using a well tuned gyro, so global tracking
data would not be needed. From this two color split,
other robots in range are attracted to green and repulsed
from red via virtual forces, subject to the robots innate
Inertia. The net force imposed onto a robot within
range of a lighted ring is a unit vector defined as:∑
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Dgreen
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Where θ, Fx, and Fy are relative to the robot and alpha,
beta are the attraction and repulsion force respectively.
When a robot has a virtual force imposed onto it, it will
rotate to a threshold of the specified relative angle, then,
once there, drive in the direction of the force.

F. Convergence Testing

To validate the idea that a LED ring with two colors
combined with the omnidirectional camera could cause

the appropriate and expected result in a robotic swarm,
we first did convergence testing. The aim of this was to
see if the robots would converge to a specific point in
space only by following the virtual forces imposed on
it. The question we wanted to answer was, given a Point
of Interest (POI), if the Foot-bots pointed their LED
ring at that point and used the colored LEDs from other
robots to guide them, would the robots arrive at the
POI. Although every robot knew the location they were
travelling to internally to correctly display their light
ring, the robot did not use this location in its navigation.
For this experiment, robots were placed randomly in a
finite simulation in ARGoS, and given adequate time
to converge to the selected point.

G. Food Finding Experiments

The second experiment was an attempt to solve the
problem described in the Problem Statement with the
presented model. For this experiment, a finite space
was used, and a single light was placed inside, marking
the point of interest. Foot-bots were placed in random
locations in this field based on a gaussian distribu-
tion. For this experiment, the robots had a number of
different states as shown in Figure XXX below. The

Fig. 7: State Diagram for Food Finding Trials

robots start in the random walk state, where the robots
perform some type of random walk. In the case of this
research project, the robots random walk took the robot
in a straight line until obstacle avoidance caused the
robots to change direction. If a robot found the Point
of Interest (POI) or saw a colored blob, the robots
behavior would deviate from the random walk. If the
robot sees a colored blob, it will calculate the virtual
forces according to all the colors around the robot
(Using the LED Ring). If the robot detects the Point of
Interest, the robot stores its location, and turns on its



LED display, as shown in LED Rings. Once the robot
has detected the location of the POI, it will continue
random walking forever. The experiment is considered
finished once all of the robots have found the Point of
Interest.
The food finding experiments were also split with two
distinct purposes. The first set of experimental trials
were aimed at applying the model to the problem state-
ment. Following these experimental trials, we started
optimizing the parameters listed below.

• Continuous Turning: Robot turning that al-
lows for turning in continuous curves along
the path.

• Omni-directional Aperture: The distance that
the omni-directional camera can see

• Linear Robot Speed: The linear speed of the
robot

• Turning Speed: The turning speed of the robot
• Inertia Factor: A parameter changing the ef-

fect of repulsion and attraction forces on the
direction of the robot

• Repulsion Factor: A scaling factor on the
force generated bu the red LEDs

• Attraction Factor: A scaling factor on the
force generated by green LEDs

• Number of Robots: The number of robots in
the experiment

V. RESULTS

A. Convergence Results

To validate the model, the initial experiment was to
test for the convergence of the Foot-bots if they were
all given a POI and could all be influenced by each
other’s virtual forces. The following data was collected
for the convergence trials. Multiple trials were run with
different seeds and different locations around the map.
The data collected was the distance of each robot to
the Point of Interest as well as the time-step when the
data was collected. All data was then inserted into one
model as shown below, 8.

B. Control Results

To allow for the verification of our food finding
model, we started off by collecting control data for
the food finding experiments. Our control experiments
were made up of 25 randomly seeded trials. For each
trial, the robot was only able to use our method
of random walking to find the light– they were not
influenced by other virtual forces, and would walk in
a straight line until encountering an object. From these

control trials 12, we can see that the baseline random
walk is slow: after 8000 time steps, half of the 40 robots
have converged. It is also evident that this model is
logarithmic in its growth: as time goes on, there is a
smaller and smaller probability a robot will reach the
POI.

By averaging our data, we can get a model of our
growth:
Indicator Robots = 9.94000325 log(x) -67.38994838
which yields the following graph 13:

C. Food Finding Results

1) Initial Trials: The first set of trials for food
finding was, once again, proof of concept based. We
wanted to test both the forces individually so that we
could analyze their effects on the system. We did 2 sets
of trials, one with aperture 88, and one with aperture 70,
which corresponds to a vision range of 0.289m*tan(88)
= 8.276m, 0.289*tan(70) = 0.794m respectively. Both
sets were made up of 25 runs of red only, and 25 runs
of green only trials. We then looked over the results and
decided to execute a set of 25 runs with both red and
green at an aperture of 70. Each simulation was run for
30 minutes, which corresponded to 8000 timesteps in
ARGoS, using the time parameters we specified. For all
of these simulations we ran with an attraction force and
repulsion force of 1/-1 respectively. The robots were
using discrete turning, were not taking into account
obstacle avoidance when following blobs and had no
inertia.

2) Optimized Trials: The optimization trials were
performed on one random seed (123), and one pa-
rameter was changed at a time. In total, there were
17 different trials, however, some trials were discarded
due to the model not producing the desired behavior,
or some trials are a duplicate with a different seed to
verify results.

D. Videos

• Initial convergence test:
https://www.youtube.com/watch?v=p05i5vZeQlA

• Initial convergence test:
https://www.youtube.com/watch?v=EoyFn7X1E44

• Final convergence test:
https://www.youtube.com/watch?v=0r2cxE1sSqo

• Optimization trial ID 11:
https://www.youtube.com/watch?v=fcvAmq7f2es

• Optimization trial ID 7:
https://www.youtube.com/watch?v=086vrdFAgiI



Fig. 8: Distance of robots to POI in convergence testing

Fig. 9: The initial state of convergence testing

VI. DISCUSSION

A. Convergence

During the convergence tests we see that the robots
all approach the POI quickly. Because all of the robots
have their virtual axis set up to impose a virtual force
on other robots towards the center from the start, any
robot can average out all of the blobs and will get an
accurate virtual force vector pointing towards the POI.
Upon closer inspection of the data it is clear that the
robots do not end up touching the POI, this is because

Fig. 10: The final state of convergence testing

when a robot is close to the POI, the repulsive forces
from the red lights next to and across from it push the
robot away. The distance the robot ends up from the
POI, therefore, is the steady state from the repulsive
forces and the attractive forces, a low energy state,
where the forces are in equilibrium. If we were to
reduce the effect the red blobs have at close distances,
we would see the robots pack closer together.



Fig. 11: Drawing of Virtual Divisions Across Each
Robot relative to (0,0)

B. Control Behavior

For the control, the time it takes for all robots to
find the food is logarithmic. This is explained as the
probability that each robot finds the food is independent
of one another. This means, to start, there is a high
likelihood that at least one of the 40 will find food, but
this quickly dwindles with time. The probability that
an individual robot finds food in a timestep is Pf . The
number of robots that have found the food at a time
step is given by N. The probability any robot will find
food in a given time step is therefore given by:
P=1-(1-Pf )40−N , where
N = 9.94000325 log(x) -67.38994838
and x is the current time step.

C. Presented Model vs. Control

1) Green Behavior: Looking at the 88 aperture trials
for green, we see that, for the most part, the Foot-
Bots find the POI extremely quickly. This, however, is
subject, first off, to that fact that the range of these
cameras for these trials are not realistic. In a real
system, it would be a stretch for the robots to quite
see so far. Second off, and more importantly, we see a
few stragglers. If not all the robots find the food source
within 2000 steps of the first robot finding the food, we
can see that there are large swathes of time before any
more robots find the food. Looking at the 70 aperture
trials, a much more reasonable detection distance, we
notice the same effect from the 88 trials exacerbated:
more frequently, no more robots find the light source
for long swathes of time. Watching the simulation at

aperture 70 trials, we see why this behavior happens.
When the robots find the light source, while they
remain close to the light source, they attract all other
robots to themselves and the light source. However,
as these robots diverge from the light source, they
continue to pull all other robots along with them. This
leaves them all in a cluster, moving with the indicator
robot. This means that these robots, which have not
found the food, will not venture out to find the food,
but will follow the indicator robot as it random walks,
until this indicator robot happens to random walk back
into the range of the POI. This leads to a boom or bust
system, where it is highly effective if all robots can
find the source quickly, and highly ineffective if they
take significant time to reach the indicator bots.

2) Red Behavior: The behavior of the indicator
robots is almost the antithesis of the green only indica-
tor robots. With a high aperture, and therefore a long
sight range, we can see that barely any robots actually
notice the food source, after only one notices the food.
This is easily explained. When only one robot that has
found the POI, its range is great enough that it repulses
all other robots away from the POI. The behavior in the
second trial set, with an aperture of 70, is significantly
better. As the range is less, this allows for indicator
robots to diverge far enough from the POI that they
no longer repulse all robots away from the POI. This
allows, through random walking, for other robots to
find the POI. When enough robots have found the POI,
then repulsion alone can become useful. If the indicator
robots are aligned in such a way that their virtual forces
point at, or near one another, the repulsions away from
the POI will cancel out, and the leftover force will point
at the POI.

D. Variations and Parameters

1) Aperture: The optimized model included many
different parameters and variations. Varying the aper-
ture parameter resulted in faster POI detection time,
however, was more unrealistic. As the aperture is
raised, the robot can see further robots. Although
distance scaling was implemented, where blobs further
away give less force, a high aperture allows a robot to
gain too much information. If the robot has vision that
extends across the finite space, then there is likely a
better model for food finding than the one presented
in this paper. Therefore, once a decently low aperture
of 70 was found, it was used for the remainder of the
optimization trials, although a higher aperture would
likely work better.



Fig. 12: Control Trials

Fig. 13: Food Finding Data Trend

2) Continuous and Discrete Turning: Upon the im-
plementation of this model in Buzz, we found two
possible ways of turning. Continuous turning uses the
gotop() function to set a linear and angular speed of
the robot to approach a virtual point. This virtual point
is continually adjusted as the robot moves. This allows
the robot to move in continuous curves as opposed to
discrete straight lines. Discrete turning cannot turn and
travel linearly at the same time. Once the robot detects
that the virtual force is outside a threshold as compared
to its yaw angle, it will rotate, otherwise it will travel
forward. Discrete turning is more simple to implement,
and therefore was used in the initial trials before it was
found that continuous turning proved more effective.

This can be attributed to the fact that continuous turning
allowed for the robot to continuously approach its
destination as opposed to turning while its environment
was still changing.

3) Obstacle Avoidance: Obstacle avoidance was al-
ways enabled for all trials when the robots did not see
any blobs, or had found the POI. However, for some
trials, if the robot saw a blob and used the virtual forces
to determine its direction, it would not use obstacle
avoidance. The initial trials, and some of the optimized
trials did not have obstacle avoidance enabled while
being influenced by the blobs. This results in a faster
POI detection time, but is not as realistic.



Fig. 14: Aperture 88 on only attraction

Fig. 15: Aperture 88 on only repulsion

4) Number of Robots: Based on the results of Trial
11, 13 and 14, decreasing the number of robots in this
simulation reduces the effectiveness of this model. Trial
13 and 14, for 30 and 20 robots, respectively, both need
more time for the last few robots to find the POI. This
is due to the fact that less robots means there is less
directional information available on the field for the last
few robots to use to establish the approximate location
of the POI. Additionally, based on observation, a robot
obtains a better sense of direction of the POI with more
robots providing directional information.

5) Inertia Factor: The inertia factor describes how
much the blob forces affect the steering of the robot.
The higher the inertia factor, the more a robot maintains

its current direction. A higher inertia factor will cause
the robot to ignore the virtual force vector established
by the LEDs of other robots. The inertia factor creates
a force in the current yaw orientation of the robot,
effectively, bringing the total virtual force vector in
line with the yaw. An inertial factor of around 0.01
was found to produce behavior according to the model.
However, this parameter could use more tuning to
produce better results and allow the robots to discover
the POI faster. An inertia factor of 0.5 was used in Trial
4, however, this was found to reduce the directional
steering of the robots in response to the lights too much.
As seen in Trial 4, the inertial factor was found to be
much less effective at bringing the robots to the POI



Fig. 16: Aperture 70 on only attraction

Fig. 17: Aperture 70 on only repulsion

than an inertial factor of 0.01. This is also expected
because the inertial factor brings in the behavior from
the control, which is much more inefficient. Therefore,
increasing the inertial factor too much results in a
longer time for robots to find the POI.

6) Robot Speed: Increasing and decreasing the robot
speed had positive impacts on the effectiveness of the
model at finding the POI. Specifically, if the speed
of a particular state is tuned to the speed of another
state. For example, a slower turning speed for robots
that were blob following proved more effective. This
is because this allowed the robots to slowly converge
to the position of the POI and created a more robust
model. With a too high turning speed the robots directly

approached a green light instead of the direction in
which it was pointing. This caused obstacle avoidance
to trigger until the two robots separated.

E. Other Behavior

With the correct parameters this model can create
more specific and interesting behavior. As seen in the
image below, two behaviors were created, herding and
flocking. Herding is a behavior where a robot that has
not yet found the POI, pushes the robot with the LEDs
displaying to the POI. This can also occur with more
than one robot, as they push the robot with the LED
display to the POI. Flocking is when a robot with the
LEDs on, acquires a flock of robots that have not found



Fig. 18: Aperture 70 with both repulsion and attraction

Fig. 19: Table of Parameters

the POI. These robots that have not found the POI are
too held back to push the robot with the LEDs on,
but they follow the robot actively. The follower robots
appear very dynamic and in a flock due to the fact that
they are trying to see the green light, but avoid the red
light. Both of these behaviors were created by tuning
the parameters of the presented model. Specifically,
object avoidance for robots that are being steered by
blobs is disabled and those robots have faster linear and

angular speed as compared to robots that have found
the POI. This results in robots following the LED robot
and leads to herding and flocking. The herding behavior
provided some very interesting results as the robot that
had not found the POI was pushing the robot that had
found the POI to the POI directly. This means that
the robot that had the LED displayed was effectively
unable to move, and completely under the control of
the pushing robot. This behavior can be described as



Fig. 20: The results of the optimization trials

Fig. 21: Herding

a guide dog, where the robot that has not found the
POI is effectively blind, but the robot with the LEDs
on brings the robot to a specific location. This could
be useful if a robot was unable to move due to a motor
malfunction or other error, it could use its LED ring to
steer towards a particular location using other robots.

F. Weaknesses and Errors

The model provided in this research paper has a
number of weaknesses that need to be addressed. First
of all, while this model is a decentralized solution, it
still uses the GPS location of the POI in every robot.
This is unrealistic in a real-world environment, where
a definite location is not known. This paper considered
this aspect out of the scope of the project. There are a
number of solutions that can replace this to provide a
more realistic viewpoint such as using a gyroscope to
save the direction, or using odometry, or the LEDs of
other robots to reinforce each other. Additionally, none

Fig. 22: Flocking

of the trials performed in the experiments had any sen-
sor or mechanical noise. This would have undoubtedly
increased our error and reduced the effectiveness of this
model.
Many small errors and bugs were encountered in the
creation of this model. For example, due to the be-
havior of the omnidirectional camera on the foot-bot,
whenever a robot was parallel to the virtual axis of
another robot, as shown in ??, the parallel robot would
experience a force to the direction of the POI. This is
seen in the image below by the red ray on the ground
below R13. There are possible fixes for small bugs such
as these, but this would result in a more complex and
slower model. Another bug in the implementation of
ARGoS allows for a foot-bot to see LEDs through a
robot. This bug has serious implications on our model
and only occurs when two robots are close. However,
this bug will result in a robot behaving in the opposite



Fig. 23: R13 parallel to the virtual axis of R11

way. The robot moves away when it is supposed to be
close, and moves closer when it is supposed to move
away.

Fig. 24: R4 looking through R13

G. Future Ideas

This experiment is far from comprehensive, there
are a handful of variations we would have liked to
have tested. For example, using regions of interest
rather than points. This may lead to some interesting
behaviour as the robots wouldnt all be pointing at the
exact same spot. Adding noise to our model would
also have been interesting as it would allow us to test
the robustness of this system. Increasing the number
of colors we display on the LED ring may have
also provided interesting results because it would have
allowed us to provide more information as to where
the POI is; in that same vein, if we were to use a
running average of blobs and take into account prior
timesteps we believe we may have seen more stable
behaviour. Finally, adding variants of random walk may
have provided us with better performance depending on
the walking algorithm

VII. CONCLUSION

In conclusion, the directional information provided
by regional division in individual robots in a swarm
allows for the convergence of robots to a POI. Footbots
were able to navigate to a light source in the ARGoS
simulation software based on the information provided
by the LED rings of other robots. Through the careful
manipulation of environment variables and other model
parameters the efficiency of the model was increased to
provide results much better than the control. This model
has the possibility for creating new swarm behavior
as shown in the provided behavior in flocking and
herding. Overall this project met expectation and has
the capability to be expanded upon in the future.
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