# Conveying Directional Information Through Regional Division in Swarms

Chris Cedron Clayton Dembski Floris van Rossum

#### Introduction

Adaptive boosting

- Take multiple weak classifiers and combine them into a strong classifier
- Each classifier divides space into two regions
- Regions are aggregated to create robust divisors



#### Premise

- Robots only communicate with the LED ring and camera
- Robots try to converge at a specified point somewhere in the world
- Each robot that knows divides the world into two regions about the point of interest



- Footbots
  - Swarmanoid Project
- 24 Proximity Sensors
- 24 Light sensors
- 12 LEDs in a ring
- LED Beacon
- Omnidirectional camera
  - Can detect different colors
  - Blob detection
  - View Distance =  $H^{*}Tan(\Theta)$





- LED ring is split into two along a virtual axis
- Robots are pushed by virtual forces
  - Attracted to Green and Repulsed from Red
  - Will rotate to direction of the net force
    - From blobs
    - From inertia
- Omni-directional camera detects blobs
- Blobs are used to calculate forces
  - Each force is inversely proportional to the distance the blob is away
  - Each force points in the direction of the blob









Ada Boosting

Our Model





# **Convergence Testing**

- All robots start with Known Point of Interest
- All robots start with virtual axis split
- All robots sum all force vectors created from all seen blobs
- All force vectors inversely proportional to the distance of the each blob
- All robots attempt to aggregate to given point.
- All robots rotate and move in direction of virtual force



# **Convergence Data**



Convergence Trials



# **Food Finding Variations**

- Food Finding
  - No robots start knowing Point of Interest
  - If a robot finds the Point of Interest, they divide their region
  - Those that have not found Point of Interest, are steered by other robots' light sources.
  - Simulation ends when all robots have found the Point of Interest



#### Parameter Variations

| Continuous vs. Discrete Turning       | Does the robot stop when turning                            |
|---------------------------------------|-------------------------------------------------------------|
| Aperture Variations                   | How far the robots can see                                  |
| Robot speed                           | How fast the robots travel                                  |
| Turning speed                         | How fast the robots turn                                    |
| Inertia factor                        | How much the robot is impacted by the blob detection forces |
| Repulsion and Attraction scale factor | -                                                           |
| Number of Robots                      | -                                                           |

#### Food Finding Control Data



**Control Trials** 

View Distance = 0.289\*tan(88) = 8.276m



Green Only Aperture 88 Red Only Aperture 88

View Distance = 0.289\*tan(70) = 0.794m



Green Only Aperture 70 Red Only Aperture 70



Both Red and Green: Aperture 70

View Distance = 0.289\*tan(70) = 0.794m



**Optimization trials** 

View Distance =  $0.289*\tan(70) = 0.794m$ 



50% Convergence

Full Trial

**Optimized Trials** 

Model ≫ Control

View Distance =  $0.289*\tan(70) = 0.794m$ 



Control Trials

Full Trial

**Optimized Trials** 

# Analysis

- Increased aperture size provided faster detection
  - Robots can see further
  - Ultimately not realistic
- Continuous turning is slightly more efficient
- Reducing repelling force factor improves detection
- Less robots decreases the efficiency of this model
- Other parameters can be optimized to improve the model and decrease time to detection
  - Inertia factor
  - Robot speed
  - Turning speed

# Analysis

- Attraction
  - $\circ$   $\;$  Highly effective at long range, and when indicator robots are close to light
  - Misleading when indicator robots are far away from light
    - Robots will cluster around indicator robot and follow it around as it random walks
- Repulsion
  - Incredibly ineffective when there are few indicator robots at high range
    - Especially when close to light
  - As number of indicator robots increase, likelihood that their repulsion forces will cancel increases
    - Robots find food faster
- Both
  - At short range, will cause gravitational "hooking" towards POI
  - At high range will cause continuous influence towards POI

#### Adding Noise to the System

#### Separating Based On Region

#### **Other Behaviors**





Flocking

Herding

# More behaviors?

# **Closing Thoughts and Future Improvements**

- In our simulations, the robots kept track of the Point of Interest
  - In real life, robots could keep track of the region they've divided using a gyro
  - No mapping needed
- Complex Separation regions allowing for zones of interest not just points of interest.
- Noise
  - Test robustness of model

# **Closing Thoughts and Future Improvements**

- Increase number of LEDS
  - Higher resolution
- Increase number of colors
  - Allow for transfer of more directional information
- Variation in Random walks
  - Analyze their impact on the convergence time
- Use a different sensor to find a POI
  - $\circ$   $\,$  Say a place with a temp that is too high, or a dangerous level of CO  $\,$
- Using a Running Average of blob over multiple steps

#### **Questions?**



https://www.youtube.com/watch?v=0r2cxE1sSqo&list=PLXU3X MQtq5ISTmXgb7ol-OpTF3PWw1PFe

# Bibliography

http://37steps.com/4993/random-fisher-combiner/

https://towardsdatascience.com/understanding-adaboost-2f94f22d5bfe